Improving Software Quality Assurance with Automated Testing Frameworks

Authors

  • Zhang Jing

Abstract

As software systems grow in complexity, ensuring high-quality standards becomes increasingly challenging. Automated testing frameworks have emerged as a key solution to address the growing demands of efficient quality assurance (QA) in software engineering. This paper explores the role of automated testing in software quality assurance, reviewing various testing techniques such as unit testing, integration testing, and end-to-end testing. The paper also compares popular automated testing tools, such as Selenium, JUnit, and TestNG, analyzing their capabilities, limitations, and suitability for different types of projects. By presenting case studies, the research demonstrates how organizations can leverage automation to improve testing coverage, reduce human error, and accelerate the software release cycle while maintaining product quality.

References

Cardozo, K., Nehmer, L., Esmat, Z. A. R. E., Afsari, M., Jain, J., Parpelli, V., ... & Shahid, T. (2024). U.S. Patent No. 11,893,819. Washington, DC: U.S. Patent and Trademark Office.

Gupta, M., & Jain, J. (2024). Optimizing E-commerce Dynamic Pricing Using Aggregated Market Data and Cloud-Based Analytics. International Journal of Global Innovations and Solutions (IJGIS).

Jain, J., & Gupta, M. (2024). Enhancing Software Engineering Practices for AI-Driven Fintech Applications. International Journal of Global Innovations and Solutions (IJGIS).

Jain, J. (2024). AI-Driven Optical Character Recognition for Fraud Detection in FinTech Income Verification Systems.

Cardozo, Kenneth, Landon Nehmer, Z. A. R. E. Esmat, Mani Afsari, Jitender Jain, Venkateshwar Parpelli, Bhuvaneswari Balasubramanian, Bijun Du, Daniel Nizinski, and Tausif Shahid. "Systems and methods for extracting and processing data using optical character recognition in real-time environments." U.S. Patent Application 18/429,247, filed May 23, 2024.

Jain, J. Leveraging Advanced AI and Cloud Computing for Scalable Innovations in Fintech Systems, 2022.

Jain, J., Khunger, A., Agarwal, G., Tanikonda, A., & Modake, R. (2021). Optimizing Payment Gateways in Fintech Using AI-Augmented OCR and Intelligent Workflow. Authorea Preprints.

Jain, J., Modake, R., Khunger, A., & dnyandev Jagdale, A. CLOUD-NATIVE SECURITY FRAMEWORK: USING MACHINE LEARNING TO IMPLEMENT SELECTIVE MFA IN MODERN BANKING PLATFORMS , 2019.

Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P. E., He-Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234–245.

Chen, C., & Chen, M. (2020). A hybrid deep learning model for detecting financial fraud. In Proceedings of the IEEE Symposium on Computers and Communications (pp. 345–350).

Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55.

Van Vlasselaer, V., Eliassi-Rad, T., Akoglu, L., Snoeck, M., & Baesens, B. (2017). GOTCHA! Network-based fraud detection for social security fraud. Management Science, 63(9), 3090–3110.

Pozzolo, A. D., Boracchi, G., Caelen, O., Alippi, C., & Bontempi, G. (2018). Credit card fraud detection: A realistic modeling and a novel learning strategy. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3784–3797.

Carcillo, F., Dal Pozzolo, A., Le Borgne, Y. A., Caelen, O., Mazzer, Y., & Bontempi, G. (2019). Scarff: A scalable framework for streaming credit card fraud detection with Spark. Information Fusion, 41, 182–194.

Roy, A., Sun, J., Mahoney, W., Alshboul, R., & Prabakar, N. (2018). Deep learning detecting fraud in credit card transactions. In Proceedings of the IEEE International Conference on Big Data (pp. 1846–1855).

Published

2025-01-09

How to Cite

Jing, Z. (2025). Improving Software Quality Assurance with Automated Testing Frameworks. Indonasian Journal of Multidisciplinary Innovations , 7(7). Retrieved from https://scholarlyarticle.vncinstitute.com/index.php/IJMI/article/view/43

Issue

Section

Articles